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Abstract. The subject of this Letter is twofold. First, a recently claimed failure of stochastic quantization 
scheme (SQS) to describe standard chiral anomalies at finite stochastic time is shown to result from an 
elementary mathematical error. The consistent approach of treating chiral fermions in SQS is briefly 
sketched and full agreement with previous investigations is established. Second, a serious new limitation 
on SQS is found, namely, its incapability to reproduce global ehiral- and odd-dimensional parity-violating 
anomalies. 

1. Generalized stochastic regularization (SR) [1] explicitly preserves chiral gauge 
symmetries in the stochastic quantization scheme (SQS) for chiral fermions. Therefore, 
it is an interesting test of SQS to check if the pertinent chiral anomalies are correctly 
reproduced after SR is removed. 

In a recent note [2], a negative answer to this question was claimed. This failure of 
SQS, implying its incapability to describe massless fermions at f'mite fictitious stochastic 
time t, was attributed in [2] to the asserted noncommutativity of the zero mass limit 
(m-}0) and the equilibrium limit (t---}oo). These conclusions contradict previous 
considerations [3], where the recovery of the correct chiral anomalies within SQS (in 
a slightly different form from that in [2]) was explicitly demonstrated. The reason that 
anomalies appear within SQS is that the additional nonlocal terms introduced through 
SQS in the corresponding chiral Ward identities (cf. the r.h.s, of Equation (8) below) 
yield finite nonzero contributions (i.e., anomalies) when SR is removed (see Equations 
(9) and (10) below). 

In Section 2 we briefly outline the SQS formulation for chiral (e.g., left-handed) 
fermions ~bL(t, x) interacting with a background U(n) gauge field A~,(x) and the 
derivation of the correct standard (perturbative) chiral anomalies at t'mite t. Section 3 
is devoted to the criticism of results and to the amendment of the approach of [2] so 
as to deduce the correct conclusions agreeing with those of [3] and of Section 2. On 
the other hand, some new serious drawbacks of SQS are pointed out in Section 4. 

2. The Langevin equations for chiral fermions (in Euclidean D-dimensional spacetime) 
are taken in the form [3]: 

tgtt~ = -(~f~*)~k~ + r/~, t~t~ ~ = -(5~*~)r-@~ + ~ ;  (1) 
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•  ( rlL ( ,  x ) -~( t ' ,  x ' ) )  = -- 2i hA(/-- t') ~(1 -- Ho) ~(D)(X -- X'), (2) 

with the following notations: 

~*)  = ~*)(A) = ia~*)Vu(A ) = ia~*) (c9 u + iAu(x)) , 

,(o ~ o) 
(3) 

~7(A) = ~:.Vv(A) = .~(A) 

Ol~ = l ( f i  + ?(n + 1))q 4 au(x) = A ~ ( x ) r  ~, a = 0 ,  1 ,  . . . ,  n 2 - 1;  

~O? - (1 - Ho)$r ,  ~ k  - (1 - HO)~L and analogously f o r ( ~  • . (4) 

The superscript 'T'  in (1) means operator transposition, ri o, rio in (2) and (4) are the 
zero-mode projectors of ~*~,  ~ * ,  respectively. The Gaussian random source ~b. in 
(l) is an anticommuting chiral spinor field with a two-point correlation function (2). SR 
is represented through the introduction of bA(t- t') in (2) obeying the following 
properties 

a:,(- t)  = a^( t ) ,  lim hA(t) = 6(0, A~o~ 

d k 
d t  k hA( / ) i t=  0 = O, 

k = 0, 1 , . . . , L -  1, (5) 

where L is an appropriate integer. A particular choice of (5) is 

hA(t ) = l ( t  !)- 1m(A[t[)~ exp { - Altl}. (5') 

The projection (4) in (1) and (2) is needed to guarantee the approach to 
equilibrium ( ~ *  and ~ * ~  in (1) should be positive in order to yield a 'drift force'): 

(F[(~•  Q = tlim ( F : ~ •  (6) 

The subscript 'Q' on the l.h.s, of (6) denotes the usual Euclidean quantum average of 
an arbitrary functional F[(~• with regularized standard weight exp { -SA}: 

= i f  dOx dOx ' ~ (X)KA(X, x ' lA  u) ~ (x'), SA 

KX '(x, x' IA~) ==- t~II] i (  ~bff (t, X)-~( t ,  X') ) , (7) 

= ~ ( ~ , ~ ) - i  2 dzbA(z)exp{- z~*~}(1 - rio) (x .x ' )  

= @(~,@)- 1 (1 - YIo)(X, x') 
+ 

(for the choice (5')). 
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( _ )The subscript '~/' on the r.h.s, of (6) indicates the SQS average according to (2) with 
•  ~s ( ,  x) being solutions of (1) subject to arbitrary initial conditions. 
Choosing, e.g., ~ ( t  = 0, x) = 0 (in [3] another choice was made, ~k~(t = - 0% 

x) = 0), one gets in analogy with [3]: 

a b  L b 7~ J~,  (t, x) 

= 7uab/~• x)Tbtr*~b~( t, x ) ) ,  

= i (  {[ ~* ( ~ * ) -  ' ]7"(~L~ -- t~t~k) } (t, X)~kk (t, X)) n -- 

- ( ~k L ( ,  x) { [ ~ * ( ~ ' ) - ' ] ( q ~  - OttO?)} (t, x))  ( 8 )  

= lira 2 d ~ A ( 0 0 ( t -  0 t r{T"[(exp{ - ~!~*N} - 
A ~  

- exp { - (2t - 0 ~ * ~ } ) ( 1  - IIo)(X, x) - 

- ( exp{-  ~N!~*} - e x p { - ( 2 t -  T)N~*})(1 - IIo)(X, x)l} (9) 

= lim t r [ (  A .] z+~ ( A ) L+I ] ( 1  - I I o )  - ( 1  - Ho) (x, x) + O(e -t)  

(for the choice (5')). 
Now from (9) by a straightforward computation using, e.g., Seeley expansion of the 

heat kernels e x p { -  z~*~},  e x p { -  z ~ * }  (e.g., [4]), one easily gets the standard 
covariant form of the (non-Abel• chiral anomaly plus a correction for finite t 
vanishing in the equilibrium limit 

a b  L b 7~ J~ '  (t, x) = tr[Ta(Ho - Ho) ] (x, x) - ~r + 

+ t r{T a [exp{ - 2 t ~ * }  (1 - no)  - exp{ - 2 t~*~}  (1 - IIo)] (x , x)}; 

]l ~a(x) ~-~ !(4n)~ era---m, tr[ T"Fm~,="" Fu,, ,u,,]" (10) 

Let us particularly stress that SQS with SR (1), (2) manifestly preserves chiral gauge 
symmetries in the SQS averages, the r.h.s, of (6), for any t. However, this last property 
is not in conflict with the property of SQS with SR to correctly reproduce the standard 
chiral anomalies (9), (10). Indeed, on the one hand chiral anomalies result from the 
nonexistence of a consistent chiral gauge invadant det'mition of the chiral fermion 
effective action [5] which, in our case, reads (cf. (7)) 

S,( rf = - In det[ - iKA] (11) 

(recall that KA(7 ) is not an operator in one and the same space, but maps left-handed 
into right-handed spinors and, therefore, there is no unambiguous dei'mition of 
det[ - iKA] ). On the other hand, the object S,(ff (11) cannot be obtained within SQS as 
an appropriate SQS average according to (6). Hence, there is no clash between the chiral 
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gauge noninvariance of (11) and the manifest chiral gauge symmetry of the stochastic 
averages (6). 

3. In [2] the following SQS Langevin equations were chosen: 

Otto = - [72(A) + mZ]~b + ( - i~l(A) + m)q ,  + qz,  

Ot~= - [~/:(A) + mZ]r-~+ ( - i T l ( A )  + m)T-~l + ~2; (12) 

(ha(t ,  X)-~b(t', X') ) = bah bA(t - t ') ~(z))(X - X'), a, b = 1, 2, 

where notations (3) are employed. Using (12) with initial conditions ~b(t = O, x) = O, one 
gets, in complete analogy with [3] and Section 2: 

~i .1(o + 1)(/, x)  - Oi, (-~(t ,  x ) (  - i ~ , ) 7  (z'+ ')~b(t, x )  ) n (13) -,a 

fo { [ ( m )  = lira ( - 4 )  dZ~SA(~)O(t_z)tr  7(n+~) 1 �9 X 
^ ~  m + i 7  

( exp( -x (Tz  + mE)} . e x p { - ( 2 t -  z)(72 + m Z ) } ) ] ( x , x ) } .  X 

Equation (13) is an improved version of Equation (8) in [2] since here only mathemati- 
caily well-defined objects (heat-kernels of elliptic positive operators (m: + ~2)) are used 
instead of formal sums over eigenvaiues of 7 (whose spectrum is, in fact, continuous 
in general) as in [2]. We stress that in obtaining (9), (13) no additional regularization 
('proper-time' cut-off, Pauli-Villars, etc.) besides SR was needed. After removing the 
SR in (13) and taking t large enough (to simplify the subsequent expressions) one finds: 

O , . I  (~ 1)(t, x) - a  

= - 2 d ~  + 2 tr[7 (D+ 1)exp { -  2t(~l 2 + m2)} (x, x)] + (14) 

f; + 2m 2 dz tr {7 (D+ 1)[exp { - ~(~2 at - m 2 ) }  _ exp { - ( 2 t  + z)(72 + m 2 ) ) ]  ( x ,  x ) } .  

Now it is evident from (14) that, contrary to the claim in [2], no difficulties do exist 
with the order of the limits m -~ 0 and t-~ oo. Indeed, let us take, for instance, first m -) 0 
with t < oo in (14) (this limit was claimed in [2] to annihilate the axial anomaly) 

O~,j(ff + 1)(t, x) = --  2d~  + 2 tr[ 7(z) + 1)iio~(x, x)] + 

+ 2 tr[ ~(z) + 1)(exp { _ 2t72} _ Yio~) (x, x)], (15) 

where IIo~(X, x') denotes the kernel of the zero-mode projector of ~/. Equation (15) is 
the correct version of the mathematically senseless Equation (12) of [2] 

OuJ(D+ 1)(t, X) 

= - 2 Fun Z @*E(x) 7(o + 1)~be(x) [ 1 - exp { - 2t(E 2 + m2)} ] (*) 
m ~ 0  E 
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(71 ~ e ( x )  = E~ke(x)) .  Rewriting the r.h.s, of this last equation in terms of operator kernels 

- 2 lira tr [ 1, (~ + I)(~(D)(0) - exp { - 2 t ~  2 + m2)}) (x, x)] 
m - * O  

one clearly sees that it is ill-defined. 
The first two terms on the r.h.s, of (15) are immediately recognized as the standard 

nonintegrated axial anomaly, whereas the third term represents a correction for t'mite 
t which vanishes for t-o 0o. Upon integration of (15) over x, the last term gives zero for 
any t and, therefore, the standard index theorem n + - n_ = ~ d~176 is recovered 
for any finite t (n + denoting the numbers of chiral zero modes). 

Thus, we have shown that the variant of SQS (12) for massless Dirac fermions chosen 
in [2], when carefully treated, also correctly reproduces the standard chiral anomalies *. 

4. Finally, let us briefly demonstrate that SQS does in fact exhibit some new difficulties, 
but these occur for global (nonperturbative) chiral anomalies [6] as well as for massless 
fermions in odd D. 

Indeed, according to [6] under homotopically nontrivial gauge transformations 
U(x) ~ SU(2) in D = 4: 

det [ - i~l(A)] 1/2 = det [ - i ~ * ( A ) ]  = - det [ - i ~ * ( A  v)]. (16) 

On the other hand, for each SU(2) gauge invariant quantity ~r[A~,] SQS gives 

= tim < ~r[Au(t,  x)] > n, 
t---* O0 

where Au(t,  x )  satisfies the Langevin equation 

O,A a = - bS  ~hA a + tI a # e f t  pt /~ , 

S~fF[A ] = SyM [A ] - In det[ - i~*(A)]. 

(17b) 

( 1 8 )  

(19) 

Clearly, due to (16), i.e., the gauge noninvariance of Self (19), the r.h.s, of (17a) acquires 
the well-known uncertainty 0/0 [6], whereas (18) is gauge covariant and, therefore, the 
SQS average (17b) does not detect the global chiral anomaly (16) at finite stochastic 
time (further details will appear in a next note [7]). 

Next, as discussed in the second reference in [3] SQS yields both a gauge- and 
parity-covariant expression for the induced massless fermion current in odd D:  

~r Let  us note  that ,  even s tar t ing from the formal  express ion  (*), upon  integrat ion over  x one gets  

0 = f dDx  t~J~ z~ + ~  x) = - 2 l 'ml ~ (n + - n _ ) (1 - exp { - 2tm2}) = 0 (**) 

for t < oo. Equat ion  (**) should  replace the  incorrect  Equa t ion  (13) o f  [2] where  on the  l.h.s., ins tead  of  zero  
as in (**), the au thors  put  S dDx t~,J~ D + ~  t, x) = n+ - n ??. Equa t ion  (**) is, of  course ,  a trivial identity 
which does  not  contradic t  the index theorem,  i.e., the  in tegrated anomaly .  
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J2(x) -- d~tr[Ta~,,g(A)exp{- ~2(A)}(x,x)] =(2i)-l ~-~-(x)lndet[~2(A)] 

Hence, SQS fails to reproduce the corresponding parity-violating anomalies in odd D 
[8] (when the latter cannot be cancelled by appropriate counterterms [9]) 

J2(x) - - i 2 , 

where t/~[A ] is the parity-odd spectral asymmetry measuring t/-invariant [ 10] oflT(A). 
This fact poses serious restrictions on the applicability of SQS to fermions in odd D. 

The reason for the failure just found of SQS to reproduce anomalies of discrete 
symmetries is easy to understand. SR preserves these discrete symmetries. However, 
unlike the case of anomalies of continuous symmetries, there are no modified by SQS 
Ward identities for the corresponding discrete symmetries, so that the mechanism for 
a raising of the standard chiral anomalies, described in Section 2, does not operate here. 
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